Innehållsförteckning:
- Steg 1: Introduktion:
- Steg 2: Placa De Desarrollo Arduino Wemos:
- Steg 3: Circuito Del Joystick (mando a Distancia):
- Steg 4: Joystick 2:
- Steg 5: Joystick Placa De Circuitos:
- Steg 6: Circuito Del Receptor (motorer):
- Steg 7: L298N (doble Puente En H)
- Steg 8: Montaje Del Vehículo:
- Steg 9: Arduino:
- Steg 10: ¿Qué MacAddress Tiene Nuestra Placa?
- Steg 11: ESP-NU
- Steg 12: Librería ESP-NU
- Steg 13: La Estructura De Datos a Transmitir/recibir:
- Steg 14: Defino El Tipo De Función ESP-NU
- Steg 15: Emparejamiento De Los Dispositivos ESP-NU:
- Steg 16: Envío De Datos Al Vehículo:
- Steg 17: Recepción De Datos En El Vehículo:
- Steg 18: Joystick: Definicion De Pines Y -variabler
- Steg 19: Setup ()
- Steg 20: Loop ()
- Steg 21: Funcion LeePots ()
- Steg 22: Funcion AjustePots ()
- Steg 23: Funktion DirMot ()
- Steg 24: Control De Batería En El Joystick:
- Steg 25: Arduino (Vehículo)
- Steg 26: Vehículo, Loop ():
- Steg 27: Vehículo: - Funktion SkrivL298N ()
- Steg 28: Slutlig:
Video: Kommunikation ESP-NU. Kontroll Remoto De Vehículo, joystick, Arduino Wemos .: 28 steg
2024 Författare: John Day | [email protected]. Senast ändrad: 2024-01-30 12:44
Todo parte de la idé de poder mover una silla de ruedas para personal discapacitado vía remota y poder acompañarlos sin necesidad de empujar la misma. Como ejemplo de funcionamiento, han creado este proyecto. Posteriormente se pueden cambiar los circuitos de salida y los motores, por otros de mayor potencia y acoplar a las ruedas de la silla un sistema mecánico que la mueva.
Si la persona que va en silla de ruedas está capacitada para manejarla personalmente, se pueden fusionar ambos sketchs de Arduino en uno solo y evitar las comunicaciones remotas. Simplemente una única placa para controlar los movimientos del joystick y control de los motores.
Aunque no gane ningún concurso, si a alguien le gusta (o una parte del mismo) o puede realizar el proyecto y aliviar el estado de ánimo de una persona mejorando su movilidad, me sentiré contento.
I slutet av dokumentet bifogar jag en PDF på engelska av detta arbete (webböversättare).
Den slutliga dokumenten, tillägg till PDF med fullständig översättning till spanska.
Steg 1: Introduktion:
Resumen del trabajo:.- Varios entradas analógicas a través de un solo puerto.
.- Wemos, especificaciones eléctricas.
.- Protocolo de comunicaciones ESP-NU.
.- Circuito L298N. Specificaciones y pinout del mismo.
.- Montaje vehículo con dos motores DC
En este trabajo explico como tomar varios valores analógicos e introducirlos en un único puerto A0 de una placa Wemos. Vi har en joystick som kan överföras till en annan form, till och med en trådlös användning av wifi-protokoll för ESP-NU. En el vehículo, otra Wemos recibe los data and acciona dos motores DC para controlar la dirección del vehiculo.
Quizás alguien se pueda plantear que las cosas expuestas de estos trabajos, se puedan conseguir de forma fácil y barata en alguna web, pero el hecho de hacerlo tu mismo y con componentes de bajo precio siempre es unaatisfactionón cuando lo ves funcionar. Aparte de eso, me conformo con que a una persona le guste o le aclare algún concepto o duda.
Intentaré explicar los conceptos usados para mejor comprensión del trabajo. Quizás a algunos le parezca interesante alguna parte del mismo.
Steg 2: Placa De Desarrollo Arduino Wemos:
Estamos hablando de una pequeña placa de desarrollo con amplias posibilidades:
Con ella podemos realizar proyector IoT, análisis de datos y envío a través de las redes y otras muchas cosas, aprovechando la capacidad Wifi de las mismas. En otro proyecto que he realizado, creo una red wifi propia y puedo abrir una cerradura remota, mediante una clave tecleada desde nuestro smartphone, que también he publicado. La diferencia respecto al anterior es que en vez de usar protocolo HTLM para la comunicación, uso la característica muy poco publicada de la comunicación WiFi del tipo ESP-NU entre dos dispositivos, por ser fácil, rápida, segura (encriptada) y sin necesidad de emparejamientos a la hora de actuar (solo al configurar el sketch de Arduino). Mas adelante, a la hora de explicar el sketch, comentaré los detalles a tener en cuenta.
La placa dispone de una entrada de alimentación de 5v en el pin correspondiente (o por USB) y un una entrada de GND. Dicha alimentación no tiene porque ser 5v, ya que lleva un regulador de voltaje que lo convierte en 3.3v, que es realmente el voltaje de trabajo. En la datasheet of the la Wemos podemos verlo y adjunto también una image of the la datasheet del regulador.
Según el link de las especificaciones del ESP8266, podría trabajar incluso a 3v, pero conviene alimentarlo con un voltaje superior a 3.5v, para que a la salida del regulador interno tengamos un minimo de 3v. En dicho link se puede ver otros detalles técnicos que amplian esta information.
cdn-shop.adafruit.com/product-files/2471/0…
La Placa también dispone with 9 entradas/salidas digitales (D0-D8). Det här är en kapacitet för poder trabajar med salidas del tipo PWM, buss I2C, etc.
Detalle a tener muy en cuenta a la hora de conectar algo a la salida de los pines digitales, para iluminar leds, activar relés, etc. La corriente máxima que puede entregar un pin Digital es de 12mA. Si se necesita entregar mas corriente, debemos intercalar entre el pin y el dispositivo un transistor o un opto acoplador de mayor potencia. Ver figura de salidas.
Con una resistencia en serie con la salida de 330 ohms, se entrega una corriente de 10mA, por lo que si es posible, aumentar el valor de las resistencias. Hay and muchas webs la recomendación de una resistencia de 330 ohm en serie con los leds Yo recomiendo usar resistencias mas altas. Si ilumina el ledde en nuestro gusto, no necesitamos sumar mAs al trabajo Cualquier ahoro de energía siempre es bueno.
NOTA: en los pines digitales, podemos dar valores PWM entre 0 y 1023. En Arduino Uno, entre 0 y 254.
La placa Wemos también dispone de una entrada digital A0, para análisis de datos analógicos. Hay que tener en cuenta dos cosas. La primera es que NO se le puede aplicar un voltaje superior a 3.3v directamente, ya que se versioraría. Si se quiere medir un voltaje superior, hay que intercalar un divisor de voltaje externo. Los valores de dicha entrada son de 0 a 1024.
Otras características:
-Salida de 3.3v para alimentar circuitos exteriores. Máxima corriente 12mA por pin.
-Conector micro USB för firmware och alimentation av 5v
-Pulsador de Reset.
Vi kan lära dig hur du konfigurerar IDE de Arduino para trabajar con este tipo de placa, así como las librerías necesarias. No voy a entrar en ello para no alargar demasiado este trabajo.
Steg 3: Circuito Del Joystick (mando a Distancia):
Me gusta la placa de desarrollo Wemos, ya que tiene poco tamaño, es barata y tiene muchas posibilidades. Como solo dispone de una entrada analógica A0, surge el problema de querer captar varios valores analógicos al mismo tiempo. Para mi caso en concreto, un joysick está formado por dos potenciómetros con salidas individuales analógicas y un pulsador. Además, quiero analizar el valor actual de la batería que uso en el mando a distancia, por lo que ya necesitamos tomar 3 valores analógicos distintos.
En el siguiente esquema, creado con Fritzing, tenemos a la izquierda un divisor de voltaje. Si la batería es de mas de 3.3v, la entrada analógica corre riesgo de averiarse, por ello conviene reducir el voltaje para su análisis. Voy a usar una batería de 3.7v, por lo que cuando está cargada completeamente es de aproximadamente 4v y debido al divisor de voltaje, en el pin 4 de H1 tenemos 2v (variabel dependiendo del estado de la batería). A la derecha tenemos un joystick básico, formado por dos potenciómetros y un pulsador (R3 es externa al joystick). Se alimentan con los 3.3v que proporciona la Wemos. En este esquema general primero, tenemos 3 valores analógicos (pines 2, 3 y 4 de H1) y un valor digital (pin 1 de H1).
Para poder analizar en la placa Wemoslos 3 valores analógicos, recurrimos and unos pequeños opto-acopladores, el chip SFH615A o TLP621. Es muy básico su funcionamiento para este trabajo. En pin 4 del chip pongo uno de los valores analógicos and analysizar. Mer information om pin 2 a GND. Todos los pin 3 unidos ya A0 y cada uno de los pin 1 a una salida digital a través de un resistor, las cuales voy activando sucesivamente y dependiendo cual active y leyendo el valor en A0, asigno a cada valor una variable (pot 1y pot 2 del joystick y batería).
Hay que tener en cuenta que no podemos conectar la salida digital de la Wemos directamente al pin 1 del TLP621, ya que se se versioraría dicha salida digital. Cada pin digital och Wemos puede suministrar unos 12mA. Por ello, intercalamos una resistencia suficiente para activar el led interno. Con 470 Ω, es suficiente para activarlo y solo supone 7 mA.
Al querer introducirir 3 valores analógicos mediante este system, usamos 3 salidas digitales para poder activarlas. Si queremos introducir mas valores analógicos por A0, podemos usar otras salidas digitales más o podemos seguir usando solo 3 salidas digitales, añadiendo al circuito un demultiplexor y dando valores binarios a las entradas, conseguimos hasta 8 posables valores digitales.
Añadimos al mando a distancia 2 leds, uno para reflejar “Power ON” och el otro para el estado de la batería y “Transmisión OK”.
Añado al circuito un interruptor para la batería y un conector para poder recargar la misma sin tener que quitarla (aviso: APAGAR PARA RECARGAR para evitar dañar el regulador ME6211 de la placa Wemos). Con todo lo anteriormente explicado, el circuito completeo del mando a distancia con joystick es la siguiente figura.
Steg 4: Joystick 2:
Förklaring till el posterior desarrollo till IDE de Arduino:
En A0 recojo los valores de los potenciómetros y del nivel de la batería.
En D0 pasa a HIGH cuando se pulsa el botón del joystick (“parada de emergencia”)
Si activo D1, leo el estado del potenciómetro vertical vertikal del joystick en A0.
Si activo D2, leo el estado del potenciómetro horizontal del joystick en A0.
Si activo D5, leo el estado de la batería en A0. NOTA: en un principio lo puse en D4, men me daba problemas al flashear el programa desde el IDE de Arduino, por lo que la pasé a D5
La salida D3 se usará para el led de Actividad (azul). Dicho led se enciende cuando hay movimiento de joystick y la transmisión ha sido correcta. Cuando está en reposo nos indica el estado de la batería (1 parpadeo entre 3.6 y 3.5v, 2 parpadeos entre 3.5 y 3.4v y 3 parpadeos por debajo de 3.4v).
El led rojo indica Encendido/Power ON.
S1 es el interruptor de encendido. Conviene tenerlo apagado cuando se realiza la carga de la batería o si hago modificaciones en el software (5v a través del USB).
El esquema del circuito montado en una protoboard es la figura siguiente:
La línea inferior positiva es el voltaje de la batería. La linea superior positiva es la salida de 3.3v de la Wemos
Steg 5: Joystick Placa De Circuitos:
Han diseñado la siguiente placa de circuitos con Sprint-Layout 6.0 para la conexión del joystick, opto acopladores, Wemos y otros. Indico las medidas por si alguien la quiere realizar (40x95mm). Vi kan använda den med hjälp av pin 1 för TLP621. Van soldados al terminal cuadrado y en la posición indicada visto desde la cara de los componentes. La parte de la placa próxima a los conectores y Wemos, la recorto posteriormente, así queda de forma cómoda el agarre del mando, el encendido y las conexiones externas.
Las fotos del mando a distancia. En los bordes, las conexiones USB, el conector de carga de la batería och el interruptor de ON/OFF.
Fácil de sujetar, aunque sea un poco grande. Me falta realizar una caja a medida para el mismo con la impresora 3D:
Steg 6: Circuito Del Receptor (motorer):
Está compuesto por otra placa Wemos, donde recibo la data del joystick o control remoto y activa las señales necesarias hacia un L298N (doble puente en H) y controlar dos motores, hacia adelante y hacia atrás, con control de dirección. Como complemento del circuito, 3 leds, uno para power ON, otro para la transmisión de datos y un tercero como indicativo de “parada de emergencia”. Aprovecho estos dos últimos (parpadeando) para la indicación del estado de la batería del vehículo.
Control de estado de la batería: Lo primero a tener en cuenta es que la batería que estoy usando es de 9v. Intentar medir la misma en A0 directamente, supone deteriorar el puerto, ya que el máximo valor que se le puede aplicar es de 3.3v. Para evitarlo, ponemos también otro divisor de voltaje, esta vez mas descompensado que en el mando a distancia y reducir el valor en A0. Para este caso, utilizo un resistor de 47k en serie con otro de 4k7. En el punto central es donde tomo la referencia a medir. "Bateria baja", 7v och 5.5v, 1 parpadeo del led de "Emergencia". "Bateria MUY baja" (genom debajo de 5, 5v, 3 parpadeos del led "Recepción ok")
Elcirkulationen kompletterar fordonet:
Debido a que este circuito está montado sobre un vehículo, no he querido complicar mucho el sketch de Arduino. Enkel mottagning av joystick via wifi ESP-NU och konvertering och señales de control para los motores. Eso facilita a que en futuros cambios de software o modificaciones de trayectoria, se realicen solo en el mando a distancia (joystick) och vez de en ambos.
Nej han realizado ninguna placa de circuitos especial. Tan solo una preliminär para los leds y sus resistencias.
Steg 7: L298N (doble Puente En H)
Esta es una pequeña descripción del circuito que controla los motores DC que mueven el vehículo.
- Conectores A y B (azules de 2 tallar). Son las salidas de corriente hacia los motores. Si tras las pruebas, el motor gira al lado contrario del que deseamos, simplemente invertir los pines del mismo
Conector de Power (azul de 3 tallar). Es la entrada de corriente al circuito. Como el mismo puede ser alimentado entre 6 y 36 voltios, hay que tener muy en cuenta el jumper o puente que hay junto al conector. Si lo alimentamos con un voltaje entre 6 y 12v, el puente se deja PUESTO y en Vlogico tenemos una salida de 5v hacia la Wemos (como en este trabajo). Si el circuito se alimenta con un voltaje superior a 12v, hay que quitar el puente para que no se dañe el convertidor DC-DC que lleva y si queremos que funcione su circuitería lógica, deberemos llevar un cable de 5v externo hacia el circuito (5v inmatning). En mi caso, como utilizo una batería de 9v, lo dejo puesto y me sirve para alimentar la placa Wemos a través del pin 5v. GND viene del negativo de la batería y va también a G de la Wemos y a los leds.
Conector de Control (6 tallar). Tiene dos partes. ENA, IN1, IN2 controlan el motor conectado en A y ENB, IN3, IN4 que controlan el motor conectado en B. En la tabla de la figura anterior se indica los niveles de las señales que debe tener para poner and movimiento los motores, adelante, atrás o frenado. En ENA y EN EN hay unos puentes. Si los dejamos puestos, el L298N pondrá los motores al voltaje de entrada Vm en el sentido indicado, sin ningún control de velocidad ni de regulación de voltaje. Si los quitamos, usaremos dichos pines para recibir una señal PWM desde la placa Wemos y así controlar la velocidad de cada motor. En Arduino se consigue mediante un comando analogWrite (). En la placa Wemos, todas los puerto D tienen esa capacidad.
En la figura del L298N hay un recuadro con un pequeño sketch para Arduino UNO, que hará girar el motor A hacia adelante a un voltaje cercano al 75% de Vm.
La gráfica anterior a este texto, explica la relación de analogWrite () con la forma de salida en los pines para Arduino UNO. En la Wemos, el 100% se conigue with analogWrite (1023) y al 50% sería analogWrite (512).
A la hora de realizar este proyecto, hay que tener muy en cuenta los posibles valores PWM de ENA y ENB que se suministran mediante el comando analogWrite, ya que dependen del valor del voltaje de la batería y del voltaje de los motores. En este caso utilizo una batería de 9v (Vm) y motores de 6v. Al ir aumentando la señal PWM en ellos, el voltaje del motor asciende, pero no comienza a movers hasta que llega a un valor determinado, por lo que en las pruebas, se debe establecer ese minimo PWM que lo haga mover a baja velocidad. Por otra parte, si ponemos la señal PWM al máximo, le damos al motor el voltaje Vm de la batería (9v) y se puede dañar el mismo, por lo que en las pruebas, debemos medir el voltaje y establecer ese máximo PWM para que no se deteriore y como mucho proporcione los 6v máximo. Ambas cosas, como ya comentaba anteriormente, en el sketch de Arduino del mando a distancia.
Steg 8: Montaje Del Vehículo:
Tengo que reconocer que el montaje es un poco casero, pero efectivo. Quizás diseñe e imprima en 3D un modelo mas bonito, pero este modelo “casero” tiene la ventaja de ver mejor el funcionamiento. Existen una serie de motores, con reductora incluida y ruedas para acoplar, a bajo precio. Yo he usado lo que tengo a mano.
Para el montaje, han impreso en 3D unas piezas, ruedas, soporte de rodamiento/motor y unos casquillos y uso tornillería de 3mm diámetro para unir las piezas. Para la unión del motor al tornillo eje, he usado los contactos de una regleta de conexión eléctrica cortando el plástico externo. Al montar las ruedas, conviene pegar el tornillo a la rueda, para evitar que patine al girar.
La siguiente muestra el soporte del rodamiento/motor y la pieza 3D que lo su sujeta.
Monto la rueda. Tomo las medidas, corto el tornillo que sobra y los uno:
Om du vill göra det kan du enkelt hitta en motorcykel med en plattform på 10x13 cm (blanco). Les uno otra plataforma (8x12cms) para soporte de los circuitos y la rueda trasera. La diferencia de altura la marca el tipo de rueda que pongamos, para mantener el vehículo horizontal. La distancia entre la rueda trasera y la primera plataforma nos debe asegurar el giro de la misma, por eso tuve que corregir el primer agujero, como veis en las fotos.
Añado los circuitos y al final la batería con un conector para poder cargarla.
Como veis, no es un gran diseño. Mi intención es aplicar este system and una silla de ruedas como comentaba al principio de este trabajo. Men det är möjligt att du kan välja en del av bilen.
Y ahora pasamos a la explicación del sketch de Arduino que he realizado.
Steg 9: Arduino:
Como escribí al principio, no puedo extensionerme mucho y prescindo de como configurar el IDE de Arduino, librerías y como debe reconocer la placa Wemos para poder trabajar con ellas. Solo unos datos:
.- En Preferencias, Gestor de URLs adicionales:
arduino.esp8266.com/stable/package_esp8266com_index.json
.- En Herramientas (verktyg), Gestor de tarjetas, como muestra la imagen:
Steg 10: ¿Qué MacAddress Tiene Nuestra Placa?
Como paso previo e imprescindible antes de trabajar con el protocolo ESP-NOW, debemos cargar este pequeño sketch en las Wemos con las que vamos a trabajar, para saber la AP MAC de las ESP8266 que llevan integradas. En herramientas, Monitor Serie podemos ver the resultado del sketch and anotar sobre todo la AP de cada placa Wemos.
Tengo la costumbre de al recibir las que compro, marco las bolsitas y la placa con dicho dato:
Steg 11: ESP-NU
Du kan också använda AP MAC de las placas, som kommer från och med ESP-NOW-protokollet från Espressif:
”ESP-NU tillåter en kontroll direkt och de baja potencia de las luces inteligentes, sin la necesidad de un enrutador. Este método es energéticamente eficiente y conveniente.
ESP-Now es otro protocolo desarrollado por Espressif, que permite que múltiples dispositivos se comuniquen entre sí sin usar Wi-Fi. Elprotokollet är liknande a la conectividad inalámbrica de baja potencia de 2.4GHz que a menudo se implementa en ratones inalámbricos. Por lo tanto, el emparejamiento entre dispositivos es necesario antes de su comunicación. Om du vill se att det är möjligt att göra det, kan du se att det är möjligt och att det är nödvändigt att göra det. “
Mer information om en länk:
docs.espressif.com/projects/esp-idf/en/latest/api-reference/network/esp_now.html
ESP-NU är ett protokoll som kan förstärkas, men vi kan också använda en form för kommunikation och överföring av datorer till andra delar av systemet.
Steg 12: Librería ESP-NU
El sketch que he Preparado solo un dispositivo transmite (joystick) y otro recibe sus datos (vehículo). Pero ambos deben tener cosas comunes necesariamente, las cuales paso a beskriverir.
.- Inicio de la librería ESP-NU
Steg 13: La Estructura De Datos a Transmitir/recibir:
.- La estructura de datos a transmitir/recibir. Inga podemos definir las variables con longitud variabel, sino de longitud fija, debido a cuando se transmiten todos los datos a la vez, el que recibe debe saber separar cada byte recibido y saber a que valor de variable asignar dichos bytes recibidos. Es como cuando se prepara un tren, con distintos vagones y la estación que los recibe debe saber cuantos y para que empresa deben ir. Quiero transmitir 5 datos a la vez, Si pulso el joystick, y los voltajes (motor Izquierdo y Derecho) y sentido (adelante/atrás) de cada motor del vehículo, que extraigo de la posición del mismo.
Steg 14: Defino El Tipo De Función ESP-NU
.- Defino el tipo de función que realizará cada Wemos. Quizás debido a la falta de experiencecia en el protocolo ESP-NU, han tänkte ciertos problemas cuando a uno lo defino como maestro y al otro como esclavo. Siempre me ha funcionado bien poniendo los dos como bidireccionales (Roll = 3)
Steg 15: Emparejamiento De Los Dispositivos ESP-NU:
.- Emparejamiento de los dispositivos. Viktigt: En skiss av joystck -debo poner la AP MAC de la Wemos del vehículo. En el skiss av fordon, debo poner la AP MAC med joystick.
.- Como clave (nyckel), han kan också visa en ambos, la unión de ambas AP MAC, por ejemplo.
Steg 16: Envío De Datos Al Vehículo:
.- Envío de datos al vehículo, figura siguiente. Primero hay que preparar esos vagones del tren que hay que enviar (data), con recuadro rojo. Después, hay que definir a quien lo envío (da), que es la AP MAC de la Wemos del vehículo y la longitud total del TREN. Una vez definidos estos datos anteriores, se envía el paquete de datos (cuadro verde).
Recuerda: Quiero transmitir 5 datos a la vez, Si pulso el joystick, y los voltajes (motor Izquierdo y Derecho) y sentido (adelante/atrás) de cada motor del vehículo.
Tras el envío, verifico que el vehículo ha recibido los datos correctamente (cuadro azul).
Steg 17: Recepción De Datos En El Vehículo:
.- Recepción de datos en el vehículo. Esta es la función que he usado en la Wemos del vehículo. Hur kan vi ta emot en reception (med svar, ring tillbaka) och data som kan återföras till variabler (vagones del TREN) med hjälp av olika strukturer:
Y simplemente con lo anterior, puedo transmitir/recibir datos vía Wifi ESP-NOW de forma sencilla.
En los siguientes pasos beskriver en skiss av Arduino del mando a distancia (joystick).
Steg 18: Joystick: Definicion De Pines Y -variabler
. -Trans definir la librería de ESP-NOW, defino los pines que voy a utilizar de la Wemos
.- Defino las variables que usaré posteriormente:
Steg 19: Setup ()
.- Ya en setup (), en la primera parte, defino como van a trabajar los pines de la Wemos y un valor inicial de los mismos. También verifico que el protocolo ESP-NOW esté inicializado bien. Y tras ello, defino el modo de trabajo y emparejamientos anteriormente comentados:
Steg 20: Loop ()
.- Inicio el loop () con un retardo que nos marca el número de transmisiones o lecturas del joystick que quiero hacer por segundo (figura siguiente). Han har 60 msg, med en realisering av 15 föreläsningar. Después leo el estado del pulsador de emergencia del joystick. Si se pulsa, pongo a cero los valores de los motores, transmito y establezco un retardo donde no responde a nada hasta que pase ese tiempo (en mi caso de 5 segundos, delay (5000);).
.- El resto del loop (), son las llamadas a las funciones que utilizo, que posteriormente explicaré.
Steg 21: Funcion LeePots ()
.- Leo el estado de los potenciómetros y de la batería. Los retardos (delay) que pongo de 5msg son para que las lecturas en los optoacopladores sean precisas. Hay que tener en cuenta que desde que se activa el led, tarda unos microsegundos (unos 10) en estabilizar la salida, así que le pongo 5 msg para que las lecturas sean mas correctas. Se podría bajar este retardo perfectamente.
Steg 22: Funcion AjustePots ()
.- Una vez leídos los potenciómetros y el estado de labatería, hay que transformar el movimiento del joystick en sentido y corriente hacia los motores. Si analizamos el potenciómetro vertical, por ejemplo, los pasos están mostrados en la figura siguiente.
1.- El valor total en el movimiento (mínimo, reposo, máximo) está entre 0 y 1024.
2.- Averiguar cual es el punto medio del mismo (reposo de la palanca). Ver leePot ();
3.- Establecer un margen para que no se mueva el vehículo con ligeros movimientos o que no afecten las fluctuaciones eléctricas.
4.- Convertir los movimientos hacia arriba o hacia abajo en sentido y corriente de los motores.
Los pasos 2 a 4 los realizo en ajustePots ();.
Steg 23: Funktion DirMot ()
.- Partimos del hecho de que un dispositivo de dos motores, sin eje de dirección, necesita unos valores de sentido y voltaje hacia los mismos. La conversión de hacia adelante/atrás y hacia la izquierda/derecha en sentido/voltaje lo realizo en dirMot (), teniendo en cuenta las 3 direcciones hacia adelante izquierda/frontal/derecha, lo mismo hacia atrás e incorporo el giro sobre. Cuando va hacia adelante y giro, lo que hago es reducir el voltaje de la rueda a la que giro, proporcionalmente al movimiento del joystick y evitando los valores negativeos (se descontrola el vehículo), por lo tanto, el valor de reducción nunca puede ser menor que el valor de avance (como mucho, para el motor). De ahí el uso de la variable de giro (VariableGiro). Esta variable convierte el giro en mas suave y el vehículo se controla mejor.
Como la función es grande, se puede sacar del fichero INO adjunto.
Tiene varios casos, dependiendo de la posición del joystick:
.- Centrado y en reposo (vehículo parado).
.- Giro sobre si mismo (izquierda o derecha).
.- Avance (con o sin giro)
.- Retroceso (con o sin giro)
Steg 24: Control De Batería En El Joystick:
.- Por último, el control del estado de la batería. Cuando el joystick está en reposo, o no ha podido transmitir, incremento un contador. Si alcanza un valor deseado (50 veces), analizo el estado de la batería y hago parpadear el led (1 parpadeo = baja, 2 parpadeos = muy baja)
Steg 25: Arduino (Vehículo)
Sobre la parte correspondiente a las comunicaciones (ESP-NOW) con el joystick, ya se comentaron anteriormente, por lo que analizo el resto. Hay que tener en cuenta de que lo he simplificado bastante, para que si hay que hacer modificaciones, se trabaja mejor modificando el mando a distancia que a tener que poner el vehículo en la mesa y conectarlo al ordenador. Por ello, me limito a recoger los datos de movimiento y pasarlos al L298N para que se muevan los motores. Priorizo la recepción del pulsador de emergencia y en los tiempos sin movimiento, analizo el estado de la batería.
.- Pines de entrada salida de la placa Wemos y Variables usadas:
.- ya en el setup () inicio los pines y su estado inicial. El resto the setup es sobre ESP-NU:
Steg 26: Vehículo, Loop ():
.- En loop (), aparte de mirar el estado de la batería, mando ejecutar dos funciones, una comentada ya al hablar del ESP-NOW, recepción () y la otra realiza el manejo del L298N con los datos recibidos. Först och främst kan vi analysera en möjlig nödsituation och parar el vehículo.
Primero establezco un pequeño retardo en las comunicaciones, para sincronizar el receptor mas o menos con el transmisor. Ejecuto la función de recepción () och analizo si se ha pulsado “Emergencia” för proceder a la inmovilización. Si no recibo datos o movimiento de ninguno de los motores, los paro también mediante el envío de datos a la función writeL298N (). Si no hay datos, incremento un contador para revisión de la batería. Si hay datos recibidos, enciendo el led de comunicaciones y por supuesto, los mando a la función writeL298N () para que se mueva el motor según dichos datos.
Steg 27: Vehículo: - Funktion SkrivL298N ()
.- Funktion skriv L298N () Si recordais la tabla del L298N, simplemente es escribir dichos valores con los datos recibidos
Steg 28: Slutlig:
Ésto es todo. No es mi intención ganar concursos, sino aclarar conceptos. Si UNA persona agradece este trabajo, le sirve para adquirir un conocimiento y después desarrollar alguna idé propia, me conformo. Si uno lo implementa en una silla de ruedas y hace mas confortable la vida a una persona, me haría mucha ilusión.
Adjunto PDF en español and PDF en English
Adjunto los ficheros de arduino de ambos dispositivos.
En hälsning:
Miguel A.
Rekommenderad:
Arduino LED -kontroll med analog joystick: 6 steg
Arduino LED -styrning med analog joystick: I den här självstudien lär vi oss hur man använder analog joystick för att styra lysdioden. Se en demonstrationsvideo
ESP8266 RGB LED STRIP WIFI -kontroll - NODEMCU Som IR -fjärrkontroll för Led Strip kontrollerad över Wifi - RGB LED STRIP Smartphone -kontroll: 4 steg
ESP8266 RGB LED STRIP WIFI -kontroll | NODEMCU Som IR -fjärrkontroll för Led Strip kontrollerad över Wifi | RGB LED STRIP Smartphone Control: Hej killar i den här självstudien kommer vi att lära oss hur man använder nodemcu eller esp8266 som en IR -fjärrkontroll för att styra en RGB LED -remsa och Nodemcu kommer att styras av smartphone via wifi. Så i princip kan du styra RGB LED STRIP med din smartphone
Komma igång med Esp 8266 Esp-01 Med Arduino IDE - Installera Esp -kort i Arduino Ide och Programmering Esp: 4 steg
Komma igång med Esp 8266 Esp-01 Med Arduino IDE | Installera Esp-kort i Arduino Ide och programmera Esp: I dessa instruktioner lär vi oss hur man installerar esp8266-kort i Arduino IDE och hur man programmerar esp-01 och laddar upp kod i den. Eftersom esp-kort är så populära så jag tänkte rätta till en instruktionsför detta och de flesta människor har problem
ESP till ESP -kommunikation: 4 steg
ESP to ESP Communication: Denna handledning hjälper dig att byta ut andra sändtagarmoduler för alla andra projekt som inkluderar trådlös kommunikation. Vi kommer att använda ESP8266 -baserat kort, en i WiFi -STA -läge och den andra i WiFi -AP -läge, NodeMCU V3 är mitt val för detta projekt
Roliga projekt med Elegoo Uno R3 Super Start Kit - Joystick -kontroll för likströmsmotor: 4 steg
Roliga projekt med Elegoo Uno R3 Super Start Kit - Joystick Control för DC -motor: I denna instruktion ska jag försöka styra riktningen och hastigheten för en DC -motor med en joystick med hjälp av Arduino, använda komponenterna från Elegoo Uno R3 Super Start Kit finns på Amazon.com